

Adding Custom Column Property Accessor:

Create a Class called ColumnPropertyAccessor which extends IColumnPropertyAccessor.

ColumnPropertyAccessor Class.

Inside the class we pass propertyNames as list as follows
private static final List<String> propertyNames = Arrays.asList("name", "address",

"contact");

This propertyNames should be used inside the methods such as getColumnProperty()and

getColumnIndex().

In getColumnCount() the number of columns we used in our nattable.

In getColumnProperty()and getColumnIndex() methods we just pass the propertynames.

Run the Application :

Adding Column and Row Header :

Setting up the column header region

Since the column header has a dependence on the body layer and hence inherits features from it.
All it needs to do in most cases is to have a data provider. This data provider will supply data for the
column labels.

Setting up the row header layer

The row header is similar the column header. Note that the data layer also tracks the sizes of the
rows/columns. Hence, you can set the default sizes in the constructor for the data layer.

Setting up the corner layer

The corner layer derives all its feature set from the column and row header layers. Hence, it can be
set up very simply by passing in the dependents.

Drum roll ... Setting up the Grid Layer

Now we have setup layer stacks for all regions in the grid. These stacks need to be unified to work
as a coherent whole. We do this by placing a grid layer on the top. This layer is set as the underlying
layer for NatTable and we are all ready to go.

Run the Application :

Changing AutoConfig to False in NatTable Constructor & Adding default style and header menus using

autoconfiguration meathod.

Here you will find general information about configuring NatTable and the concepts involved.

ConfigRegistry

This is a global object holding the following kinds of configuration

• Styling

• Editing

• Comparators for sorting

• Any piece of arbitary information can be stored in this registry.

UiBindingRegistry

This is a global object holding the following kinds of configuration

• Key bindings

• Mouse bindings

Run the Application :

https://www.eclipse.org/nattable/documentation.php?page=styling
https://www.eclipse.org/nattable/documentation.php?page=editing
https://www.eclipse.org/nattable/documentation.php?page=sorting

Adding Popup Menu to NatTable:

The PopupMenuBuilder is a builder in NatTable to create a menu with menu items that
perform NatTable commands. It has several methods for adding such menu items and
initializes and returns the menu on calling PopupMenuBuilder#build().
To create a menu with NatTable commands you need to perform the following steps:

• Create an IConfiguration for the menu by extending AbstractUiBindingConfiguration
• Create a menu using the NatTable PopupMenuBuilder helper class
• Register a PopupMenuAction binding using the created menu
• Add the IConfiguration to the NatTable instance

The following code shows the DebugMenuConfiguration that is shipped with NatTable to
add debugging capability in a rendered NatTable.

Run the Application :

Adding Row Selection Provider:

Implementation of ISelectionProvider to add support for JFace selection handler.
The SelectionLayer this ISelectionProvider is connected to.
The IRowDataProvider to access the selected row data.

Context menu to delete selected row

Run the Application :

Adding Editor Configuration to edit cell in the NatTable:

Now for simple text editing purposes only
a EditConfigAttributes.CELL_EDITABLE_RULE config attribute has to be registered to
the IConfigRegistry.

Run the Application :

Add more advanced editing support to a HYPERLINK

"http://www.vogella.com/tutorials/NatTableEditing/article.html" HYPERLINK

"http://www.vogella.com/tutorials/NatTableEditing/article.html" HYPERLINK

"http://www.vogella.com/tutorials/NatTableEditing/article.html"NatTable.

http://www.vogella.com/tutorials/NatTableEditing/article.html
http://www.vogella.com/tutorials/NatTableEditing/article.html
http://www.vogella.com/tutorials/NatTableEditing/article.html
http://www.vogella.com/tutorials/NatTableEditing/article.html

In this exercise editing support will be provided for a table, which contains different data

than only strings. So different cell editors have to be applied for different columns.

For the SimpleEditor an anonymous inner class of

an AbstractRegistryConfiguration was used to apply basic editing capabilities.

Now that the configuration becomes more complex it is better to encapsulate it in another class:

ABOUT ANCIT:

ANCIT Consulting is an Eclipse Consulting Firm located in the "Silicon Valley of

Outsourcing", Bangalore. Offers professional Eclipse Support and Training for various

Eclipse based Frameworks including RCP, EMF, GEF, GMF. Contact us on

annamalai@ancitconsulting.com to learn more about our services.

mailto:annamalai@ancitconsulting.com

